
are plotted in that figure. In this case all of these are straight line segments with the 
boundary drawn by the dash line parallel to the singular straight line. 

In concluding the authors thank V. A. Panina and L. P. Frolova for their assistance, and 
A. G, Kulikovskii for useful discussions. 
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Transition of an incompressible boundary layer from the stationary section of a 

streamlined surface to its mobile section is considered under conditions of stabi- 
lized flow. Owing to the motion of a part of the surface a discontinuity of bourr- 

dary conditions occurs at the surface. It is assumed that the presence of singular- 
ity in the boundary conditions does not affect the first approximation boundary 

layer upstream of the discontinuity line. The problem thus stated was first con- 

sidered by Mager [l], who obtained an approximate solution for the simplest case 
of flow past a plate with the unperturbed stream in the form of a Blasius flow and 
the aft section of the plate moving perpendicularly to the basic stream. 

The aim of this paper is the derivation of a solution of equations of the boun- 
dary layer in the neighborhood of the discontinuity line on the mobile section 
in the general case of three-dimensional flows. The solution upstream of that 
,line is assumed known. The method used here may be considered as a general- 
ization of the method of continuation [2l to the case of the three-dimensional 
boundary layer. A similar scheme of solution derivation for two-dimensional 
problems of a compressible boundary layer was proposed in [33. 
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1, Bl#fc rrrumption:, The laminar flow of a viscous incompressible fluid past 
some surface is considered in the approximation of the boundary layer theory. The sur- 

face consists ofamobile and a fixed section which are separated by a line along which 
an abrupt change of boundary conditions takes place. Upstream of the separation line 
lies a region of unperturbed flow, in this case the boundary layer on the fixed part of the 

surface (it is assumed to be free of separation). 
We make the following assumptions. 

1’. The shape and motion of the rear segment are such that in a fixed refer- 

ence system the surface as a whole can be specified by the parametric equation r -- 
P (z, y), where r is the radius vector of a point of the surface, which is independent of 
time. The sets of curves z = cons1 and I/ = const define the fixed system of curvili- 
near coordinates on the considered surface. In the case of an orthogonal coordinate sys- 

tem the time independent parametrization of the surface makes it possible to retain the 

conventional form of equations of a steady boundary layer [4]. In dimensionless form 

we have 
(N, + (/<1& + (h,M), = 0 (1.1) 

IQUU, + h,vu, + hlk2wu, t v (uh,, - vh,,) = --hGx + hlhzu:z 

h2uv, + hlvvy + hlh,wv, $ u (vhzx - U/L,,) = -h,p, + hlh2v,, 

h, = 1 r, 1, h, = 1 rv 1, K = ULIv 

where z&‘/z is the distance measured along a normal to the surface ; u, u and wR-‘ft 

are velocity components in directions X, y and z , respectively: p is the pressure de- 

fined by the function of coordinates x and y known from the solution of the problem 
of inviscid flow past bodies, and B is the Reynolds number. All linear dimensions, velo- 
city components and pressure are made dimensionless by relating them to some charac- 

teristic length L, characteristic velocity 1;. and to p[J2 , respectively. 
2”. The rear segment is a rigid surface resistant to deformation whose motion is 

plane-parallel and the trajectories of its points do not intersect the discontinuity line. 

The velocity distribution in coordinates P, y are assumed to be independent of time. 

Hence with allowance for Assumption 1” it follows that the rear segment is either a cy- 

lindrical surface of infinite span or a surface of revolution. In the first case we have a 
translational motion along a generatrix, and in the second a uniform rotation about the 

axis of symmetry. 

3”. It is possible to select, at least in the neighborhood of the discontinuity line, 

an orthogonal system of coordinates LC, &! in such a way that trajectories of points ofthe 

mobile segment belong to the set z == const. By virtue of 2” it is possible to assume 
that 2 -= 0 at the discontinuity line and the unperturbed flow is situated in the region 

x < 0. In such system of coordinates the boundary conditions for Eqs. (1.1) are of the 

form 
u (2, y, 0) = u (2, y, 0) -= w (IL., y, 0) -= 0 for 5 < 0 (1.2) 

11. (2, y, 0) -= w (IL., y, 0) = 0; v (J;, j,, 0) = vb (x) for x > 0 tl* 3, 

lim 21 (J, y, z) = u, (x, y), lim v (z, y, Z) = L’, (5, y) (1.4) 
*-+m z--u 

where uh is the velocity of motion of the surface and IL, and 6, are velocity components 
of the external inviscid flow. It is assumed that in the region of the discontinuity line 
functions Ir,, /I?, p and 1’6 can be represented by power series (superscripts minus and 
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(1.5) 

6.6) 

Owing to the chosen system of coordinates ii* and vbi are independent of y. 

We consider the case when every point of line x =-= 6 is intersected by a surface 

streamline of the unperturbed flow. For z = 0 the velocity profiles are assumed to be 

kn0Wl.l 
u (0, Y, 4 = 110 (Y, Z)l ,zJ (0, 8, 4 = 00 (!A 4 (1.7) 

Profiles (1.7) are taken as the input data for Eqs.( 1.1) for calculating the boundary 

layer downstream of the discontinuity line. For small z these can be represented by the 

The following conditions of matching profiles (1.7) with boundary conditions (1.2) : 

lo+, = ~1, mob, = p,,v, a3 = 0, a.. (1.9) 

can be derived from Eqs.(l. 1). 
In the boundary layer on the mobile section of the surface in the vicinity of the dis- 

continuity line it is possible to distinguish two regions: the inner sublayer which, owing 

to viscosity force, is affected by changing boundary conditions and the outer region where 

the change of boundary conditions affects the flow by way of interaction with the viscous 
sublayer. The extended variable 

is introduced in the inner region, The meaning of constant m will be explained below. 

Solution of Eqs. (1.1) with boundary conditions (1.3) and (1.4). and initial conditions 

(1.7) is sought in the form of matching the series formulated in the outer region for 
r -+ 0 and fixed y and z, and in the inner region for fixed y and cc. 

2. Tha inner problem, The principal terms of external expansions for velo- 

city components u and u are, respectively, u. and v. whose behavior at small z is 
specified by formulas (1.8). Matching can be ensured by specifying inner expansions of 
functions u and v for form 

74 - 6 i ~~~~-~~~(~, p}, v - i ~n~~G~(~, p) (2. 9 
n=o n=o 

As the corollary of (1.8) and (1,lO) conditions 

lim 
F, (Y. t’.L) 34z+1 lim C,(Y, P) 4% (b, G 0) P.2) 

I*-tw P 
n+1 = (n $1)! al ’ p_.+ar pLn =nl 
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must be satisfied for considerable ~1. 
We represent component w by the series 

61(x) 
1” - 310 5 hnkl-%, (Y, P) (2.3) 

If function 6 (z) and 6i (z) are determined, the substitution of expansions (2.1) and 

(2.3) together with (1.5) and (1.6) into Eqs. (1.1) and boundary conditions (1.3) yields 

a sequence of problems for the determination of functions F,, G, and H, (n = 0, 1, 
2, . . _). To take into account in the first approximation equations (relative to F,, G, 
and Ho) the inertia , and also the viscous term,we set 

m = 113, 6, (x) = 6-l (5) (2.4) 

Then in the zero approximation the problem reduces to solving the system of equations 

with boundary conditions 

F, - @a’ + Ho’ = 0, 3l,F,” + (pF,,’ - H,) Fo’ - Fo2 = 0 

310G/ + (pF,, - H,) Go’ = 0 

F’, (y, 0) = Ho (y, 0) = 0, Go (y, 0) = vbO, lim ‘” ‘;I’ ‘) = 3Z, 
r-= 

;\; Go (Y, CL) = 0 

where the prime denotes differentiation with respect to p . The solution of this problem 

is 

F, = 31&, G,=v,,(f -+xp (-+), H, = 0 (2.5) 

0 

,-L~,,,(_~),,~~ 
0 

Using (2.5) for the n-th (n > 0) approximation 

(c .z 0.776458) 

we obtain equations of the form 

qhm + pvc - (n + 2)pjb + (n 3- 3% = Qrr (2.6) 

G," + p2G,,’ - npG,, = R, - q Go’% (2.7) 

H, = cl% - (n + 2)&t + &t (2.8) 

Function &is linked to F, by the relationship 

$n(Y, P) = {MY, t)dt 
0 

(2.9) 

Functions Qll., R, and s, depend on parameters of preceding approximations from 
the zero one to the (n - l)-st inclusive. General formulas for Q,, R, and S, are 
not given here owing to their unwieldiness, although their derivation is not particularly 
difficult. It should be noted that Eqs. (2.6) differ from those obtained in [2], when sol- 
ving plane problems of continuation, only by their right-hand sides. 

Boundary conditions for Eqs.(2.6) and (2.7) with p -+ 00 are specified by formulas 
(2.2). Furthermore, in accordance with (1,3), (1.6) and (2.9) 
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All inner problems can be solved owing to their uniformity in the same way as the 

first and second approximation problems are solved below, It should be noted that the 

volume of computation of higher approximation sharply increases, 

Using the first of conditions (1.9), for the first approximation problem we can obtain 

The behavior of any solution of the first approximation equations that for p -+ oo satis- 
fies condition (2.2) is defined by 

&_J$$ + Alp + o (P+‘), =G = hip+ o&-Y (2.12) 

Coefficient A, (y) is not determined by the condition at infinity, and o(~-N) denotes 

a supplement that decreases faster than any negative power of p, 

In conformity with formulas (2.11) and (2.12), we represent $r (y, ~1 as 

(2.13) 

Functions +io and $1x satisfy the following equations and boundary conditions: 

‘Iclnnr + IL%~ - 3Y911' + 3h = cpo'2; 

$ii (0) = gll' (0) = 0, Jim 9 = 0 
f.Lm 

The solution of problem (2.14) is 

(2.15) 

(2.16) 

and that of problem (2.15) is derived numerically. 

For considerable p 
911 = A,,F -i- 0 fVf (2.17) 

Since the constant A,, is determined by the specified boundary conditions at zero and 

is not a p r i o r i known, it is convenient to use the auxilliary solution x (p) of Eq. 

(2.15) which satisfies conditions 

X (0) = 0; x (P) = P -t 0 WN>, P + XJ (2.18) 

Functions qX1and x are linked by the relationship 

*ii (p) = x (CL) - X’(O)F, A,, ^ 1 - x’(O) 

The numerical determination of x @I.) can be achieved by passing to the boundary va- 
lue problem of Eq. (2.15) at its end segment of migration, chosen so that at its right- 
hand end it is possible to specify with reasonable accuracy function x and its first deri- 
vative by the asymptotic formula (2.18) in which the terms o (P-N) are rejected. 
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Preliminary estimates and trial computations had shown that for this and all subsequent 
problems of numerical integration it is sufficient to use [0, 61 as such segment. Function 
&r’ X 10 is shown in Fig. 1 (curve 1) with A,, = -0.081838. It follows from(2.13), 

(2. 16) and (2.17) that in (2.12) 
3VEo 

AI== -= Arr (2.19) 

For n = 1 we use (2.11) and (2.13) for transforming the right-hand side of Eq. (2.7) 

to 
R1 - + Gofql = - 3ai;b0 3m140 - ‘PO”%0 + - loma (PO”%1 

We represent the solution of the considered equation in the form 

(2.20) 

(2.21) 

where functions Gro, G,, and GI, satisfy, with allowance for (2. ZO), equations with 

Fig. 1 

boundary conditions 

Gl/ + pLaGIo'-- p.GIo = 0; G,,(O) = 0, lim y = 1 (2.22) 
+*-WC 

GlJ + p2Gli' - PGli = ~p/$l,i_l; G,,(O) = 0, lim y = 0 (2.23) 
Il-= 

(i = 1, 2) 

that correspond to (2.10) and (2.2) . 
The solution of problem (2.22) is 

Go = p (2.24) 

Since $ro and &I have been already determined, GI1 is obtained from (2.23) in 

simple quadratures 

G~~=~[~-Cl(~-~)eap(--$)dt]+~p~~~p(--~) 
0 

and G,, is determined by integrating Eq.(2.25) over the segment [0, 63, with the con- 
dition at p = 6, where G,, virtually vanishes, substituted for conditions at infinity. 

Function Glz X IO' is shown in Fig. 1 (curve 2). 
Using (2.13), (2.16), (2.21) and (2. 24), for the second approximation we obtain 
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(2.25) 

The asymptotic behavior of any solution of Eq.(2.6) for considerable p and n = 2 
with the right-hand side of (2.25) which satisfies condition (2.2) (where by virtue of 

(1.9) us = 0) is defined as follows: 

$2 (YY PI = - 
3mla,v2bo ‘4llp 
mOal* T+A2p+e+++ 

3m 2~+ 1 b0 All2 
~ - + 0 (@), 
E01rL9%l12 2 

Lo = lim cpo(p) = 0.729011 
PdW 

(2.26) 

The coefficient As (y) is not determined by the condition for p -+ 00. We cepce- 

sent function 9s (y, EL) in the form 

$2 (Yt P) =- - 
6mlblz’bo 

mOal 

3rn1n,?~;o 
mOn12 %3(P) + 

(2.27) 

By analogy with the first approximation &i (p) satisfies equations of the kind of (2.6) 

for n = 2 and similar conditions at zero: qZi (0) = $si’ (0) = 0 (i = 1, 2, 3, 4). 
The corresponding terms of (2.25) determine the right-hand sides of these equations, 
while the related terms of (2.26) define the solution behavior for considerable p. Then 

6m b v 

AZ (Y) = - r;o;l bo Au+ 2 s Aaz - (2.28) 

3mlnsv”bo 3m 59 

moal2 A23 + 

1 bo 
- & 10n~02a12 

where Asi ace constant coefficients at terms of order ~1 in asymptotic formulas for 

$‘& (i = 1, 2, 3, 4) for p-f 00. 
For functions +sl and $ss we have the simple quadratic formulas 

922 = $(cpo-P) + 392, 

Functions &s and $s4 were numerically determined by the same method as I$~~. 
Functions Qu3’ (curve 3) and 9 24’ X 10 (curve 4) ace shown in Fig, 1; A,,- -1/12, 
A,, = -l/s, A,, = 0.024772 and A,, = -0.014183. 

In Eq.( 2.7) for n = 2 with allowance for (1. Y) we have 

GO 
& = h + ~J$-cPocP~” + -& (GA’ - 3hG1’) (2.29) 
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It is possible to obtain from (2.2’7) and (2.29) the right-hand sides of that equation 
whose form determines, as in previous cases, the form of solution 

(2.30) 

Function Gzl satisfies equations of the kind of (2, ?) for n = 2 with corresponding 

right-hand sides and boundary conditions at zero Gsj(0) = 0 (i = 0, I . . . 5). The 
conditions for or. -+ 00 can be obtained from the asymptotic formula 

G (Y, P) = 6, p 
rnlh12& 

- - All + 0 (p-“) 
Iomonl 

(2” 31) 

The solution of the problem for Gzo is GZO = ~212. 

Fig, 2 

The results of numerical integration of remaining functions are shown in Fig. 2 (curves 
l-5 reiate to functions Csl, Gas X 10, 62, X 10, Gza X 102 and Gss x 10”). 
respectively). The used here and in the foregoing method of numerical solution of boun- 

dary value problems is the method of firing [5]. computations were carried out on a com- 
puter. Functions HI and HZ are readily determined by (2,8), where SI = S, = 0 , 

Thus formulas (2,13), (2. Zl), fZ,2?) and (2.30) provide solutions of first and second 

approximation of inner problems in the form of linear combination of certain" univeraaF 
functions of the variable [I? which are independent of initial and boundary conditions, 
and also of the shape of the surface and of the method of its parametrization. The know- 

ledge of these uncool makes it possible to define with specific accuracy the flow in 
the viscous sublayer near the separation line for any specific problem of the kind con- 
sidered here. 

If tn, = da,/dy E 0 then, in conformity with (2.13) and (2.27), the d~~on~nu~ty 
of boundary condi~o~ does not affect in the first and second approximation the velo- 
city profile in the x-direction. Its effect is also absent in higher approximations if the 
rear segment is a cylindrical surface and the initial (1.7) and boundary (I.. 4) conditions 
are independent of ,v, since then the first two of Eq$.(l, 1) are resolved independently 
of the third. 

The corollary of (2.5), (2.13) and (2,16) implies that for small z the relationships 
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u, (Il., y, 0) = q - (j 3m1k2vh mOnl 91; (0) + CJ (S), $1; (0) = - 0*375fm 

are satisfied on the mobile part of the surface. 
It follows from this that close to the wall the stream is accelerated in the x-direction 

when the rear segment represents a widening surface of revolution (m, > 0), and is 
decelerated when the surface of revolution is a contracting one (ml ( 0). This feature 
is a consequence of the effect of centrifugal forces on the particles of fluid which are 

drawn into rotation. 

3, The external problem, The form of external expansions of functions u, 

v and w is determined by the behavior of coefficients of corresponding internal expan- 
sions for considerable CL. The asymptotic formulas (2.12), (2.26) and (2.31) make it 
possible to extablish that for small 6 in the external region 

n = uo (Y, 4 + s2us (Y, 4 + a3u3 b/t 4 + 0 P3) (3.1) 

u = 80 (Y, 4 + 62v2 (Y, 4 + 63v3 (Y, 4 -+ 0 V3) 

w= +2(% 2) 4 W,(Y, 2) + 4) 

By substituting (3.1) into the input equations (1.1) and equating terms of like orderwith 
respect to 6, we obtain equations for determining functions u2, v2, w2 and us, vs, w, 

2CZ 
7.42 = C&or, us = csvo*, ws = - xuo 

u3 = c3uoz + Ali-@ 
lJ~oUo*z - lovouoy -!- wvo* - moP1) - 

v3 = C3VOr + & (~Omovo,t - ~OVOVO~ - WUO~O - loPoJ - 

q$ s I3 (y, t) dt 
0 

w3 = - +4,+- 1,;o (e (Y1 9 dt 
. 
0 

O(Y, 5) = & Ilo (vouov - uovo,) - ml (uo2 + vo2) + mopI - omo~ozz I z - 

which are simply integrable. Here c2 (y) and c3 (y) are arbitrary functions that are 

determined in the course of joiningexternal and internal expansions, 
Although the denominator of function 8 is for z + 0 of order z2 , there is no singu- 

larity at zero, since owing to boundary conditions (1.2) and the conditions of merging 

(1.9) the numerator is of the same order of smallness. 
To carry out the joining we pass in the external expansion (3.1) to internal variables. 

Using (1.8) and (1.9) we obtain 
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-6&t...) + S2($$+cza,+...) + (3.2) 

63(9+C3al+ . ..) + . . . 

By comparing (3.2) with the asymptotic formulas (2.12) and (2.26) we can verify that 
joining is ensured when 

cs = kA,la,, c3 = A,la, (3.3) 

Coefficients A, and A, are specified by formulas (2.19) and (2.28). A simple testshows 

that when (3.3) is satisfied, the conditions of joining expansions of functions v and w 

are also satisfied with the considered accuracy. 

The effect of the viscous sublayer on the flow in the external region is generally that 

of inducing an abrupt change of boundary layer thickness. A general equation was ob- 
tained in [S] which is satisfied by the effective displacement thickness R -‘h A (5, y) 
in the general case of three-dimensional boundary layer. In the notation used here 

Vz,ue (A - NJ, 4 [hv, (A - AZ)&, = o (3.4) 

A,.(x, y) = i (1 - $ 
e 
)dz, 

0 
Az(x,y)= s”(1 -+) dz 

0 
e 

With the use of series (2.1) and (3. 1) it is possible to expand for small x functions 

A1 and A2 , hence it is convenient to seek the solution of Eq. (3.4) in the form of an 
asymptotic series. Restricting the latter to the first two terms we obtain 

A (cc, y) = Do (3) + d202 (y) + 0 (a2), D, = - c2 = * AlI (3.5) 

where D,, (9) is the displacement thickness of the unperturbed boundary layer at the 
discontinuity line. Since A ,1 < 0, hence by virtue of (3.5) for m, > 0 the displace- 

ment thickness becomes smaller than the thickness of the unperturbed boundary layer. 

This is caused by centrifugal forces which, as previously indicated, accelerate the stream 

along x and by that contribute to a free from separation flow past the surface. For 
m, < 0 the effect of these forces is opposite, which results in an increase of the boun- 

dary layer thickness. 
It should be noted that the coefficients in the external expansions of us, vg and wa 

contain terms whose form is independent of the solution in the inner region (such terms 
appear in subsequent terms at the interval 83). It is simultaneously possible to separate 
in the asymptotic formulas for functions F, and G,, commencing with n = 3 and u + 

CO , terms that are independent of boundary conditions at the surface of the body and 
differ from those determined by conditions (2.2). The appearance of such terms in asym- 
ptotic formulas is related to the effect of solution in the external region on the solution 
in the sublayer. They ensure the joining with the independent terms in external solutions 
indicated previously. 
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A system of equations is derived for the three-dimensional boundary layer in a 
partly ionized multicomponent gas with frozen reactions under conditions of 

quasi-inertness and absence of external electromagnetic fields and of energy 
transfer by radiation. An analytical computation method based on the use of 

successive approximations is investigated. Variation of transfer coefficients 
across the boundary layer is taken into account by approximating the values of 

these at the external boundary and at the surface of the body. First approxima- 

tion values of surface friction and heat exchange coefficients are obtained for 

the locally self-similar cases. An example of computation of the flow of frozen 

air past a cone with spherically blunted nose at an angle of attack is presented. 

1. Let us consider the three-dimensional motion of a partly ionized multicomponent 
gas. If external electromagnetic fields are absent and the thermal diffusion effect is 

disregarded, the system of equations for a three-dimensional frozen boundary layer can 

be written as follows: 

v $ + A# + A2we + Asuw =I 


